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Abstract—In this paper, we consider retrial queueing system. Two classes of customers come to
the system according Poisson arrival processes. The first flow is a flow of priority customers, the
second flow is a flow of non-priority customers. Service times have exponential distributions.
If a priority customer finds the server occupying by the customer of the same class, it goes to an
orbit (orbit for priority customers) and makes a repeated attempt after a random delay. Inter-
retrial times have exponential distributions. If an arrival priority customer finds the non-priority
customer on the server, it can interrupt its service and starts servicing itself. The preempted
customers moves into the orbit for non-priority customers. If a non-priority customer finds the
server occupying, it goes to an orbit (orbit for non-priority customers). The customers from the
orbit behave the same way. Customers are submitted to the system after successful completion
of service. We propose an asymptotic-diffusion analysis of the system. Probability distribution
of the number of customers in a non-priority orbit and in a priority orbit are obtained.
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1. INTRODUCTION

The formation of queues in bank offices, hospitals, shopping centers and other facilities is a
common problem that modern people face in every day life. Sometimes, unable to wait in queue,
people leave and attempt to get service later, when the load is reduced. This phenomenon has
led to special systems in the queue theory, called retrial queueing systems (RQ-systems). These
systems are characterized by the customer (call) finding the server occupied, moves to a virtual
orbit where it remains for some random time, then attempts to be served again. A significant effort
has been done by a number of scientists involved in RQ-systems research. An overview of this topic
can be found in the following sources [1–5].

But in practice, traditional RQ-system models are difficult to apply widely in real-life conditions
due to their lack of versatility. Almost every field of life is affected by the prioritization of one
customer over another. In service systems such as airlines, first class customers are prioritized
over economy class. In telecommunication system, voice packs have higher priority than other
data packs like email etc. In [6] various RQ-systems with priority calls and many other system
parameters like customer loss, feedback etc. are analyzed.

Recently, mobile traffic has increased rapidly, resulting in a shortage of wireless spectrum. Cogni-
tive radio networks are promising technologies to solve the spectrum scarcity problem. In cognitive
radio networks, there are priority and non-priority users. Primary users (priority users) provide
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some spectrum bands to secondary users (non-priority users). Secondary users can cognitively
utilize these bands when they are not used by the primary users, but when the primary user has
arrived for service, the current secondary user must leave the server and attempt to occupy the
channel again later. From a mathematical point of view, the study of RQ-systems with two types
of customers is significantly more difficult than with a single type of customer. A number of works
are devoted to the study of systems with two flows. In [7], a priority system with urgent requests
and heterogeneous service is studied. In [8], the authors considered a system in which a prioritized
request, having found a server occupied, either preempts a request on the server or queues up
with some probability. In [8], the authors take into account the possibility of server breakdown.
In [9–11] the functioning metrics of RQ-systems of different configurations with two flows (priority
and non-priority) and a queue for priority flows are also found.

Notably, in the works described above, the priority customers, having found the server occupied,
enter the queue. In this paper, we propose a system with repeated calls, in which priority customers,
as well as non-priority ones, go into orbit, i.e., we need to consider a system with two orbits. In [12],
the authors considered a tandem RQ-system with two orbits. The peculiarity of the system studied
in this paper is that prioritized customers can displace the serviced non-prioritized customers.

2. MATHEMATICAL MODEL AND PROBLEM STATEMENT

Consider a system with repeated calls (retrial queueing system, RQ-system), Fig. 1.

Two simple flows with parameters λ1 and λ2 are received. The first flow is the flow of priority
customers and the second is the flow of non-priority customers. When at the moment of arrival a
customer finds the server free, it starts to be serviced during the time distributed according to the
exponential law with parameters μ1 and μ2 or the priority and non-priority flows calls, respectively.
After successful completion of the service, the customer leaves the system. When a priority flow
customer finds the server occupied at the time of arrival, then:

• if a priority customer was serviced at the server, the incoming one moves to the orbit where
it performs a random delay having an exponential distribution with parameter σ1. After a
random delay, it reaccesses the server with a second attempt to capture again;

• if a non-priority customer was serviced at the server, the incoming customer displaces the
serviced one and starts to be serviced itself, and the preempted one moves to the orbit for
non-priority customers, where it performs a random delay exponentially distributed with the
parameter σ2, after which it contacts the device with a repeated attempt to capture the server.

Fig. 1. Mathematical model of the RQ-system M (2)|M (2)|1.
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If it’s free it starts service, if it’s occupied it goes back instantly. The discipline for addressing
priority calls from orbit to the server is the same as for addressing priority calls newly arrived in
the system. Denoting: i1(t) — number of customers in the first orbit, i2(t) — number of customers
in the second orbit. The server state is determined by the value k(t): k(t) = 0, if the server is free
for service; k(t) = 1, if the server is occupied with servicing a priority customer; k(t) = 2, if the
server is occupied with servicing a non-priority customer. Then the probability that at time t the
device is in state k, in the first orbit the number of customers is i1, in the second orbit the number
of customers is i2, denote as

P{k(t) = k, i1(t) = i1, i2(t) = i2} = Pk(i1, i2, t). (1)

For the distribution (1), using the formula of full probability, we make a system of Kolmogorov
differential equations:

∂P0(i1, i2, t)

∂t
= −(λ1 + λ2 + i1σ1 + i2σ2)P0(i1, i2, t) + μ1P1(i1, i2, t) + μ2P2(i1, i2, t),

∂P1(i1, i2, t)

∂t
= −(λ1 + λ2 + μ1)P1(i1, i2, t) + λ1P1(i1 − 1, i2, t)

+ λ2P1(i1, i2 − 1, t) + λ1P0(i1, i2, t) + (i1 + 1)σ1P0(i1 + 1, i2, t)

+ λ1P2(i1, i2 − 1, t) + (i1 + 1)σ1P2(i1 + 1, i2 − 1, t),

∂P2(i1, i2, t)

∂t
= −(λ1 + λ2 + μ2 + i1σ1)P2(i1, i2, t) + λ2P2(i1, i2 − 1, t)

+ λ2P0(i1, i2, t) + (i2 + 1)σ2P0(i1, i2 + 1, t).

(2)

To obtain the characteristics of a given queuing system, it is necessary to determine the proba-
bility distribution (1). In the limit case, i.e., by solving the system of equations (2), it is difficult to
accomplish this because the system is non-trivial. Therefore, it is proposed to construct a diffusion
process with the help of which one can approximate the probability distribution (1), thus solving
the objective.

Definition 1. Let consider as a partial derivative-characteristic function a function of the order

Hk(z, u, t) =
∞∑

i1=0

zi1
∞∑

i2=0

ejui2Pk(i1, i2, t). (3)

For further investigations, we pass from the system of equations (2) the system of equations for
functions (3). We obtain:

∂H0(z, u, t)

∂t
= −(λ1 + λ2)H0(z, u, t) − σ1z

∂H0(z, u, t)

∂z
+ jσ2

∂H0(z, u, t)

∂u
+μ1H1(z, u, t) + μ2H2(z, u, t),

∂H1(z, u, t)

∂t
= −(λ1 + λ2 + μ1)H1(z, u, t) + λ1zH1(z, u, t) + λ2e

juH1(z, u, t)

+λ1H0(z, u, t) + λ1e
juH2(z, u, t) + σ1

∂H0(z, u, t)

∂z
+ σ1e

ju∂H2(z, u, t)

∂z
,

∂H2(z, u, t)

∂t
= −(λ1 + λ2 + μ2)H2(z, u, t) + λ2e

juH2(z, u, t) + λ2H0(z, u, t)

−σ1z
∂H2(z, u, t)

∂z
− jσ2e

−ju∂H0(z, u, t)

∂u
.

(4)
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Summing the equations of system (4), setting z = 1 and denoting H0(1, u, t) +H1(1, u, t)+
H2(1, u, t) = H(1, u, t), we obtain another additive equation:

∂H(1, u, t)

∂t
= (eju − 1)

×
(
λ2H1(1, u, t) + (λ1 + λ2)H2(1, u, t) + jσ2e

−ju∂H0(1, u, t)

∂u
+ σ1

∂H2(1, u, t)

∂z

)
,

(5)

which we shall solve jointly with system (4) by the asymptotic-diffusion analysis method.

The diffusion analysis will be performed for the non-priority component in the limit condition
of large delay of customers in the second orbit, i.e. at σ2 −→ 0, in several steps:

(1) performing the first-order asymptotics, we obtain the transfer coefficient of some diffusion
process, by applying it to approximate the probability distribution of the customers number
on the orbit. Also at this stage, we find expressions for the stationary probability distribution
of the server states and for the partial derivative function of the customers number on the first
orbit;

(2) performing the second order asymptotics, we obtain the diffusion coefficient of some diffusion
process;

(3) at the third stage we obtain an approximation of the customers number probability distribution
in the non-priority orbit.

3. ASYMPTOTIC-DIFFUSION ANALYSIS BY NON-PRIORITY COMPONENT

3.1. First Order Asymptotics

In system (4) and equation (5), denoting σ2 = ε, we make the following substitutions:

σ2t = τ, u = σ2ε = εw, Hk(z, u, t) = Fk(z, w, τ, ε).

Then (4) and (5), taking into account the substitutions, will be described in the form:

ε
∂F0(z, w, τ, ε)

∂τ
= −(λ1 + λ2)F0(z, w, τ, ε) − σ1z

∂F0(z, w, τ, ε)

∂z
+ j

∂F0(z, w, τ, ε)

∂w
+μ1F1(z, w, τ, ε) + μ2F2(z, w, τ, ε),

ε
∂F1(z, w, τ, ε)

∂τ
= −(λ1 + λ2 + μ1)F1(z, w, τ, ε) + λ1zF1(z, w, τ, ε) + λ2e

jεwF1(z, w, τ, ε)

+λ1F0(z, w, τ, ε) + λ1e
jεwF2(z, w, τ, ε) + σ1

∂F0(z, w, τ, ε)

∂z
+ σ1e

jεw∂F2(z, w, τ, ε)

∂z
,

ε
∂F2(z, w, τ, ε)

∂τ
= −(λ1 + λ2 + μ2)F2(z, w, τ, ε) + λ2e

jεwF2(z, w, τ, ε) + λ2F0(z, w, τ, ε)

−σ1z
∂F2(z, w, τ, ε)

∂z
− je−jεw ∂F0(z, w, τ, ε)

∂w
.

(6)

ε
∂F (1, w, τ, ε)

∂τ
= (ejεw − 1)

×
(
λ2F1(1, w, τ, ε) + (λ1 + λ2)F2(1, w, τ, ε) + je−jεw ∂F0(1, w, τ, ε)

∂w
+ σ1

∂F2(1, w, τ, ε)

∂z

)
,

(7)

where F (1, w, τ, ε) = F0(1, w, τ, ε) + F1(1, w, τ, ε) + F2(1, w, τ, ε).

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 5 2025



ASYMPTOTIC-DIFFUSION ANALYSIS 379

Formulate the following theorem.

Theorem 1. Denote the equation system solution (6):

lim
ε→0

Fk(z, w, τ, ε) = Fk(z, w, τ), k = 0, 2.

Then the following statement is true

Fk(z, w, τ) = Gk(z, x(τ))e
jwx(τ), k = 0, 2. (8)

For convenience of notation, we will omit the argume τ : x(τ) = x. Functions Gk(z, x), k = 0, 2 –
are partial derivative functions of the customers number on the first orbit, which have the form

G0(z, x) =
(μ1 − λ1)

λ1
σ1

+1

μ1(μ1 − λ1z)
λ1
σ1

− λ2 + x

σ1
z
−λ1+λ2+μ2+x

σ1

z∫
0

y
λ1+λ2+μ2+x−σ1

σ1
(μ1 − λ1)

λ1
σ1

+1

μ1(μ1 − λ1y)
λ1
σ1

dy,

G1(z) =

(
μ1 − λ1

μ1 − λ1z

)λ1+σ1
σ1 λ1

μ1
,

G2(z, x) =
λ2 + x

σ1
z
−λ1+λ2+μ2+x

σ1

z∫
0

y
λ1+λ2+μ2+x−σ1

σ1
(μ1 − λ1)

λ1
σ1

+1

μ1(μ1 − λ1y)
λ1
σ1

dy,

(9)

value x(τ) is the differential equation solution

x′(τ) = −x(τ)G0(1, x) + λ2G1(1) + (λ1 + λ2)G2(1, x) + σ1
∂G2(z, x)

∂z

∣∣∣∣
z=1

. (10)

Proof. In the system (6) we perform the limit transition at ε → 0, obtain

−(λ1 + λ2)F0(z, w, τ) − σ1z
∂F0(z, w, τ)

∂z
+ j

∂F0(z, w, τ)

∂w
+μ1F1(z, w, τ) + μ2F2(z, w, τ) = 0,

−(λ1 + μ1)F1(z, w, τ) + λ1zF1(z, w, τ)

+λ1F0(z, w, τ) + λ1F2(z, w, τ) + σ1
∂F0(z, w, τ)

∂z
+ σ1

∂F2(z, w, τ)

∂z
= 0,

−(λ1 + μ2)F2(z, w, τ) + λ2F0(z, w, τ) − σ1z
∂F2(z, w, τ)

∂z
− j

∂F0(z, w, τ)

∂w
= 0.

(11)

The solution of the equations system (11) will be found in the form (8). Then (11) will be rewritten
as

−(λ1 + λ2 + x(τ))G0(z, x) − σ1z
∂G0(z, x)

∂z
+ μ1G1(z) + μ2G2(z, x) = 0,

−(λ1(1− z) + μ1)G1(z) + λ1G0(z, x) + λ1G2(z, x) + σ1
∂G0(z, x)

∂z
+ σ1

∂G2(z, x)

∂z
= 0,

−(λ1 + μ2)G2(z, x) + (λ2 + x(τ))G0(z, x)− σ1z
∂G2(z, x)

∂z
= 0.

(12)

Let’s introduce the notation G02(z, x) = G0(z, x) +G2(z, x). Then by differentiating G02(z, x)

by z, we obtain ∂G02(z,x)
∂z = ∂G0(z,x)

∂z + ∂G2(z,x)
∂z .
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Sum the first and the third equation (12) and make a system of two equations (the sum of the
first and the third equations and the second equation (12)). Taking into account the introduced
notations, we obtain

−λ1G02(z, x) + μ1G1(z)− σ1z
∂G02(z, x)

∂z
= 0,

−(λ1(1− z) + μ1)G1(z) + λ1G02(z, x) + σ1
∂G02(z, x)

∂z
= 0.

(13)

Multiplying the second equation by z and summing the equations of the system, we obtain

λ1G02(z, x)− μ1G1(z) + λ1zG1(z) = 0. (14)

In (14), express G1(z) through G02(z, x) and substitute it into the first equation of system (13)
to obtain a homogeneous differential equation with reference to the function G02(z, x) = G02(z):

λ2
1z

μ1 − λ1z
G02(z) − σ1z

∂G02(z)

∂z
= 0,

whose solution is

G02(z) = (μ1 − λ1z)
−λ1

σ1 C. (15)

For the function G1(z) we similarly obtain the differential equation

(λ1 + σ1)G1(z) +

(
σ1z − σ1μ1

λ1

)
∂G1(z)

∂z
= 0,

whose solution is

G1(z) = (μ1 − λ1z)
−λ1+σ1

σ1 C. (16)

We shall seek the constant C. In functions Gk(z, x), k = 0, 2, we will assume z = 1 and denote
G0(1, x) = R0(x), G1(1) = R1, G2(1, x) = R2(x). The values of R0(x), R1, R2(x) satisfy the nor-
malization condition R0(x) +R1 +R2(x) = 1. If we switch to stationary mode in equation (10)
and denote x = κ by the solution of the stationary equation, we obtain the stationary probability
distribution of the server states R0(κ), R1, R2(κ).

In equation (14) we assume z = 1 and, adding the normalization condition, we obtain the system
of equations

λ1(R0(x) +R2(x))− μ1R1 + λ1R1 = 0,

R0(x) +R1 +R2(x) = 1.

From where we obtain

R1 =
λ1

μ1
, R0(x) +R2(x) =

μ1 − λ1

μ1
.

Then assuming z = 1 in (15) and (16) and using the found Rk(x), we obtain

G1(z) =

(
μ1 − λ1

μ1 − λ1z

)λ1+σ1
σ1 λ1

μ1
, G02(z) =

(
μ1 − λ1

μ1 − λ1z

)λ1
σ1 μ1 − λ1

μ1
.

Consider the third equation of the system (12) and found G02(z) = G02(z, x) = G0(z, x)+
G2(z, x):

−(λ1 + μ2)G2(z, x) + (λ2 + x(τ))G0(z, x) − σ1z
∂G2(z, x)

∂z
= 0,

G0(z, x) +G2(z, x) =

(
μ1 − λ1

μ1 − λ1z

)λ1
σ1 μ1 − λ1

μ1
.

(17)
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Expressing G0(z, x) from the second equation and substituting it into the first system equa-
tion (17), we obtain an inhomogeneous differential equation with regerence to the function G2(z, x):

(G2(z, x))
′
z +

λ1 + λ2 + μ2 + x

σ1z
G2(z, x) =

λ2 + x

σ1z

(
μ1 − λ1

μ1 − λ1z

)λ1
σ1 μ1 − λ1

μ1
,

whose solution is

G2(z, x) =
λ2 + x

σ1
z
−λ1+λ2+μ2+x

σ1

z∫
0

y
λ1+λ2+μ2+x−σ1

σ1
(μ1 − λ1)

λ1
σ1

+1

μ1(μ1 − λ1y)
λ1
σ1

dy.

Substituting the found expression for the function G2(z, x) into the system (17), we obtain the
solution for the function G0(z, x):

G0(z, x) =
(μ1 − λ1)

λ1
σ1

+1

μ1(μ1 − λ1z)
λ1
σ1

− λ2 + x

σ1
z
−λ1+λ2+μ2+x

σ1

z∫
0

y
λ1+λ2+μ2+x−σ1

σ1
(μ1 − λ1)

λ1
σ1

+1

μ1(μ1 − λ1y)
λ1
σ1

dy.

The expressions found for the functions Gk(z, x), k = 0, 1, 2 coincide with (9).

Consider equation (7). Decompose the exponent into a Taylor series

ejεw = 1 + jεw +O(ε2)

and divide the left and right parts of (7) by jεw. Then we execute the limit transition at ε → 0,
we obtain

∂F (1, w, τ)

jw∂τ
= λ2F1(1, w, τ) + (λ1 + λ2)F2(1, w, τ) + j

∂F0(1, w, τ)

∂w
+ σ1

∂F2(1, w, τ)

∂z
.

Execute substitutions

Fk(1, w, τ) = Gk(1, x)e
jwx = Rk(x)e

jwx, k = 0, 1, 2, F (1, w, τ) = G(1, x)ejwx = ejwx.

Then we obtain the following differential equation for x(τ):

x′(τ) = −x(τ)G0(1, x) + λ2G1(1) + (λ1 + λ2)G2(1, x) + σ1
∂G2(z, x)

∂z

∣∣∣∣
z=1

,

which coincides with (10). Thus, Theorem 1 is proved.

Denoting:

∂Gk(z, x)

∂z

∣∣∣∣
z=1

=
∂Gk(1, x)

∂z
, k = 0, 1, 2,

∂G02(z)

∂z

∣∣∣∣
z=1

=
∂G02(1)

∂z
.

Denote the right-hand side of equation (10) by a(x) and simplify it using (9); we obtain

a(x) = x′(τ) = −x(τ)G0(1, x) + λ2G1(1) + (λ1 + λ2)G2(1, x) + σ1
∂G2(1, x)

∂z
= λ2 − μ2R2(x).

The value a(x) has the meaning of the transfer coefficient of some diffusion process, by which
we obtain an approximation of the calls number probability distribution on the orbit.

Corollary 1. The ergodicity condition of the considered RQ-system has the following form

λ1

μ1
+

λ2

μ2
< 1.

Proof. A sufficient condition of the system ergodicity is the inequality

lim
x→∞ a(x) < 0.
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Thus, we obtain

lim
x→∞ a(x) = lim

x→∞(λ2 − μ2R2(x)) = λ2 − μ2

(μ1 − λ1

μ1

)
< 0.

From where we obtain the condition

λ1

μ1
+

λ2

μ2
< 1.

Corollary 2. The derivative function of the number of calls in a priority orbit has the following
form

G(z) =
λ1

μ1

(
μ1 − λ1

μ1 − λ1z

)λ1+σ1
σ1

+
μ1 − λ1

μ1

(
μ1 − λ1

μ1 − λ1z

)λ1
σ1

.

Thus, the number of calls probability distribution on the first orbit has the form of a weighted
sum of two negative-binomial distributions with weights λ1

μ1
and μ1−λ1

μ1
.

3.2. Second Order Asymptotics

Consider the characteristic function of a random process i(t) − x(σ2t)
σ2

. For this purpose, in
system (4) and equation (5) we make a substitution:

Hk(z, u, t) = e
jux(σ2t)

σ2 H
(2)
k (z, u, t), k = 0, 1, 2.

Denoting σ2 = ε2, in the equations system for H
(2)
k (z, u, t), k = 0, 1, 2 we substitute

τ = ε2t, u = εw, H
(2)
k (z, u, t) = F

(2)
k (z, w, τ, ε),

we obtain a system for functions F
(2)
k (z, w, τ, ε), k = 0, 1, 2 and an additive equation

ε2
∂F

(2)
0 (z, w, τ, ε)

∂τ
+ jεwa(x)F

(2)
0 (z, w, τ, ε) = −(λ1 + λ2 + x)F

(2)
0 (z, w, τ, ε)

−σ1z
∂F

(2)
0 (z, w, τ, ε)

∂z
+ jε

∂F
(2)
0 (z, w, τ, ε)

∂w
+ μ1F

(2)
1 (z, w, τ, ε) + μ2F

(2)
2 (z, w, τ, ε),

ε2
∂F

(2)
1 (z, w, τ, ε)

∂τ
+ jεwa(x)F

(2)
1 (z, w, τ, ε) = −(λ1 + λ2 + μ1)F

(2)
1 (z, w, τ, ε)

+λ1zF
(2)
1 (z, w, τ, ε) + λ2e

jεwF
(2)
1 (z, w, τ, ε) + λ1F

(2)
0 (z, w, τ, ε)

+λ1e
jεwF

(2)
2 (z, w, τ, ε) + σ1

∂F
(2)
0 (z, w, τ, ε)

∂z
+ σ1e

jεw ∂F
(2)
2 (z, w, τ, ε)

∂z
,

ε2
∂F

(2)
2 (z, w, τ, ε)

∂τ
+ jεwa(x)F

(2)
2 (z, w, τ, ε) = −(λ1 + λ2 + μ2)F

(2)
2 (z, w, τ, ε)

+λ2e
jεwF

(2)
2 (z, w, τ, ε) + λ2F

(2)
0 (z, w, τ, ε)

−σ1z
∂F

(2)
2 (z, w, τ, ε)

∂z
− je−jεw ∂F

(2)
0 (z, w, τ, ε)

∂w
+ xe−jεwF

(2)
0 (z, w, τ, ε).

(18)

ε2
∂F (2)(1, w, τ, ε)

∂τ
+ jεwa(x)F (2)(1, w, τ, ε) = (ejεw − 1)

×
(
−xe−jεwF

(2)
0 (1, w, τ, ε) + λ2F

(2)
1 (1, w, τ, ε) + (λ1 + λ2)F

(2)
2 (1, w, τ, ε)

+jεe−jεw ∂F
(2)
0 (1, w, τ, ε)

∂w
+ σ1

∂F
(2)
2 (1, w, τ, ε)

∂z

)
.

(19)
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Denote: F
(2)
k (z, w, τ) = lim

ε→0
F

(2)
k (z, w, τ, ε), k = 0, 1, 2. We formulate and prove the following

theorem.

Theorem 2. The function F
(2)
k (z, w, τ), k = 0, 1, 2 have the form F

(2)
k (z, w, τ) = Φ(w, τ)Gk(z, x),

where the function Φ(w, τ) is a characteristic function of process y(τ) = lim
σ2→0

√
σ2(i(

τ
σ2
)− x(τ)

σ2
),

and satisfies the differential equation

∂Φ(w, τ)

∂τ
= a′(x)w

∂Φ(w, τ)

∂w
− w2

2
b(x)Φ(w, τ), (20)

where

a(x) = λ2 − μ2R2(x), (21)

b(x) = a(x) + 2((λ2 − a(x))R2(x)− μ2h2(x)). (22)

Here h2(x) = h2(1, x),

h2(1, x) =
1

σ1

1∫
0

y
λ1+λ2+μ2+x−σ1

σ1 ·D(y, x)dy, (23)

D(z, x) = (λ2 + x)h02(z, x) + (λ2 − a(x))G2(z, x) − xG0(z, x), (24)

h02(z, x) =

(
μ1 − λ1

μ1 − zλ1

)λ1
σ1 ·

⎛
⎝ 1

μ1
A(1, x) − 1

σ1

1∫
z

(
μ1 − λ1

μ1 − yλ1

)−λ1
σ1

B(y, x)dy

⎞
⎠ , (25)

A(1, x) = a(x)
∂G02(1)

∂z
− (λ1 + λ2 + σ1)

∂G2(1, x)

∂z
+ x

∂G0(1, x)

∂z
− λ1R2(x)

+(a(x)− λ2)R1 + (a(x)− λ2)
∂G1(1)

∂z
− σ1

∂2G2(1, x)

∂z2
,

(26)

B(z, x) = (a(x)− λ2)G1(z)− λ1G2(z, x) − σ1
∂G2(z, x)

∂z
− (z − 1)λ1 − μ1

(zλ1 − μ1)(z − 1)

×
(
a(x)G02(z)− (λ2 + zλ1)G2(z, x) + xG0(z, x) + z(a(x) − λ2)G1(z)− zσ1

∂G2(z, x)

∂z

)
.

(27)

Proof. The solution of the equation system (18) is written in the following form:

Fk(z, w, τ, ε) = Φ(w, τ) (Gk(z, x) + jεwgk(z, x)) +O(ε2), k = 0, 1, 2.

Substituting these functions into the system of equation (18), making simple transformations and
performing the limit transition at ε → 0, we obtain a system of equations:

a(x)G0(z, x) = −(λ1 + λ2 + x)g0(z, x) + μ1g1(z, x) + μ2g2(z, x)

−σ1z
∂g0(z, x)

∂z
+G0(z, x)

∂Φ(w, τ)

wΦ(w, τ)∂w
,

a(x)G1(z) = −(λ1(1− z) + μ1)g1(z, x) + λ1g0(z, x) + λ1g2(z, x) + λ2G1(z, x)

+λ1G2(z, x) + σ1
∂g0(z, x)

∂z
+ σ1

∂g2(z, x)

∂z
+ σ1

∂G2(z, x)

∂z
,

a(x)G2(z, x) = −(λ1 + μ2)g2(z, x) + (λ2 + x)g0(z, x) + λ2G2(z, x)

−xG0(z, x) − σ1z
∂g2(z, x)

∂z
−G0(z, x)

∂Φ(w, τ)

wΦ(w, τ)∂w
.

(28)
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The functions gk(z, x), k = 0, 1, 2 will be solved as the sum of a general homogeneous solution
and a partial solution of an inhomogeneous differential equation:

gk(z, x) = CGk(z, x) + hk(z, x) − φk(z, x)
∂Φ(w, τ)

wΦ(w, τ)∂w
, k = 0, 1, 2.

Substituting gk(z, x) into (28),we can confirm that the coefficient in front of the constant C is

zero. Then equating the coefficients at ∂Φ(w,τ)
wΦ(w,τ)∂w , we obtain the equations system to find functions

φk(z, x). If the equation system for the functions Gk(z, x) is differentiated by the variable x, we
can confirm that it coincides with the equation system for finding the functions φk(z, x). Thus, we
conclude that

φk(z, x) =
∂Gk(z, x)

∂x
, k = 0, 1, 2.

Equating the remaining summands, we can write the equation system for determining the functions
hk(z, x), k = 0, 1, 2:

−(λ1 + λ2 + x)h0(z, x) + μ1h1(z, x) + μ2h2(z, x)− σ1z
∂h0(z, x)

∂z
= a(x)G0(z, x),

λ1h0(z, x) − (λ1(1− z) + μ1)h1(z, x) + λ1h2(z, x) + σ1
∂h0(z, x)

∂z
+ σ1

∂h2(z, x)

∂z

= (a(x)− λ2)G1(z)− σ1
∂G2(z, x)

∂z
− λ1G2(z, x),

(λ2 + x)h0(z, x)− (λ1 + μ2)h2(z, x)− σ1z
∂h2(z, x)

∂z
= (a(x) − λ2)G2(z, x) + xG0(z, x).

(29)

Sum the first and the third system equation (29) and add the second equation to the resulting
equation to obtain the system:

−λ1(h0(z, x) + h2(z, x)) + μ1h1(z, x)− σ1z

(
∂h0(z, x)

∂z
+

∂h2(z, x)

∂z

)
= a(x)(G0(z, x) +G2(z, x)) − λ2G2(z, x) + xG0(z, x),

λ1(h0(z, x) + h2(z, x)) − (λ1(1− z) + μ1)h1(z, x) + σ1

(
∂h0(z, x)

∂z
+

∂h2(z, x)

∂z

)
=

= (a(x) − λ2)G1(z)− σ1
∂G2(z, x)

∂z
− λ1G2(z, x).

Denote:

h02(z, x) = h0(z, x) + h2(z, x).

Then the equation system will be rewritten in the form:

−λ1h02(z, x) + μ1h1(z, x) − σ1z
∂h02(z, x)

∂z
= a(x)(G0(z, x) +G2(z, x)) − λ2G2(z, x) + xG0(z, x),

λ1h02(z, x)− (λ1(1− z) + μ1)h1(z, x) + σ1
∂h02(z, x)

∂z

= (a(x)− λ2)G1(z)− σ1
∂G2(z, x)

∂z
− λ1G2(z, x).

(30)
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Multiply the second equation by z and sum the system equations, we obtain:

λ1h02(z, x)− (μ1 − λ1z)h1(z, x) =
1

z − 1

(
a(x)(G0(z, x) +G2(z, x) + zG1(z))

+xG0(z, x) − λ2zG1(z) − (λ1z + λ2)G2(z, x)− σ1z
∂G2(z, x)

∂z

)
.

(31)

Denote the right side of the equation by A(z, x) and seek the limit at z → 1:

lim
z→1

(a(x) + x)G0(z, x) + z(a(x) − λ2)G1(z) − (λ1z + λ2 − a(x))G2(z, x) − σ1z
∂G2(z,x)

∂z

z − 1

= lim
z→1

(
a(x)

∂G02(z)

∂z
− (λ1 + λ2 + σ1)

∂G2(z, x)

∂z
+ x

∂G0(z, x)

∂z
− λ1G2(z, x)

+(a(x)− λ2)G1(z) + (a(x)− λ2)
∂G1(z)

∂z
− σ1z

∂2G2(z, x)

∂z2

)

= lim
z→1

A(z, x) = a(x)
∂G02(1)

∂z
− (λ1 + λ2 + σ1)

∂G2(1, x)

∂z
+ x

∂G0(1, x)

∂z
− λ1R2(x)

+(a(x)− λ2)R1 + (a(x) − λ2)
∂G1(1)

∂z
− σ1

∂2G2(1, x)

∂z2
= A(1, x),

which coincides with (26).

Then equation (31) can be written in the form

λ1h02(z, x) − (μ1 − λ1z)h1(z, x) = A(1, x).

Then we express the function h1(z, x) and substitute into the second equation of the system (30),
we obtain an inhomogeneous differential equation with reference to the function h02(z, x). Denote
the right part of the equation by B(z, x):

B(z, x) = (a(x) − λ2)G1(z)− λ1G2(z, x)− σ1
∂G2(z, x)

∂z
− (z − 1)λ1 − μ1

(zλ1 − μ1)(z − 1)

×
(
a(x)G02(z)− (λ2 + zλ1)G2(z, x) + xG0(z, x) + z(a(x)− λ2)G1(z)− zσ1

∂G2(z, x)

∂z

)
.

Then the differential equation is written in the following form:

λ1

(
1− λ1(1− z) + μ1

μ1 − λ1z

)
h02(z, x) + σ1

∂h02(z, x)

∂z
= B(z, x).

Its solution has the form

h02(z, x) =

(
μ1 − λ1

μ1 − zλ1

)λ1
σ1

⎛
⎝ 1

μ1
A(1, x) − 1

σ1

1∫
z

(
μ1 − λ1

μ1 − yλ1

)−λ1
σ1

B(y, x)dy

⎞
⎠ ,

which coincides with (25).

Since h0(z, x) = h02(z, x)−h2(z, x), we substitute this into the third equation of the system (29)
and denote the right side as

D(z, x) = (λ2 + x)h02(z, x) + (λ2 − a(x))G2(z, x) − xG0(z, x),

obtain a differential equation with reference to h2(z, x):

(λ1 + λ2 + μ2 + x)h2(z, x) + σ1z
∂h2(z, x)

∂z
= D(z, x),
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the solution of which has the form

h2(z, x) = z
−λ1+λ2+μ2+x

σ1
1

σ1

z∫
0

y
λ1+λ2+μ2+x−σ1

σ1 D(y, x)dy.

Assuming z = 1, we obtain (23).

Consider equation (19). Substitute into it

Fk(z, w, τ, ε) = Φ(w, τ) (Gk(z, x) + jεwgk(z, x)) +O(ε2), k = 0, 1, 2,

making simple transformations and performing the limit transition at ε → 0, we obtain

− ∂Φ(w, τ)

w2Φ(w, τ)∂τ
+ a(x)g(1, x) = λ2g1(1, x) + (λ1 + λ2)g2(1, x)

+G0(1, x)
∂Φ(w, τ)

wΦ(w, τ)∂w
− xg0(1, x) + xG0(1, x) + σ1

∂g2(1, x)

∂z
+

1

2
a(x).

The functions gk(1, x) are written in the form

gk(1, x) = C ·Gk(1, x) + hk(1, x) − φk(1, x)
∂Φ(w, τ)

wΦ(w, τ)∂w
, k = 0, 1, 2.

Considering the conditions
∑2

k=0 hk(z, x)
∣∣∣
z=1

= 0,
∑2

k=0 φk(z, x)
∣∣∣
z=1

= 0 we obtain the equation

∂Φ(w, τ)

∂τ
=

(
λ2φ1(1, x) + (λ1 + λ2)φ2(1, x)−G0(1, x) − xφ0(1, x) + σ1

∂φ2(1, x)

∂z

)

×w
∂Φ(w, τ)

∂w
− w2

2
Φ(w, τ)

×
(
a(x) + 2

(
λ2h1(1, x) + (λ1 + λ2)h2(1, x) − xh0(1, x) + xG0(1, x) + σ1

∂h2(1, x)

∂z

))
.

Convert the coefficients in front of w ∂Φ(w,τ)
∂w and w2

2 Φ(w, τ), we obtain

λ2φ1(1, x) + (λ1 + λ2)φ2(1, x) −G0(1, x)− xφ0(1, x) + σ1
∂φ2(1, x)

∂z
= a′(x),

a(x) + 2

(
λ2h1(1, x) + (λ1 + λ2)h2(1, x)− xh0(1, x) + xG0(1, x) + σ1

∂h2(1, x)

∂z

)
= a(x) + 2((λ2 − a(x))R2(x)− μ2h2(1, x)) = b(x).

Then we obtain the equation

∂Φ(w, τ)

∂τ
= a′(x)w

∂Φ(w, τ)

∂w
− w2

2
b(x)Φ(w, τ).

The theorem is proved.
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The function b(x) has the meaning of the diffusion coefficient of some diffusion process, using
which we could approximate the probability distribution of the number of calls on the orbit.

3.3. Diffusion Approximation of Probability Distribution of the Number of Calls
on a Non-Priority Orbit

Apply the inverse Fourier transform to equation (20). We obtain the Fokker-Planck equation

for the probability distribution density function P (y, τ) = ∂P{y(τ)<y}
∂y :

∂P (y, τ)

∂τ
= −∂{ya′(x)P (y, τ)}

∂y
+

1

2

∂2{b(x)P (y, τ)}
∂y2

.

It can be concluded that y(τ) = lim
σ2→0

√
σ2

(
i
(

τ
σ2

)
− x(τ)

σ2

)
is the solution of the stochastic differ-

ential equation

dy(τ) = a′(x)ydτ +
√
b(x)dW (τ),

where W (τ) is a Wiener random process, a′(x)y – transfer coefficient,
√
b(x) – diffusion coefficient.

Consider the diffusion process z(τ) = x(τ) +
√
σ2y(τ). Note that z(τ) = lim

σ2→0
σ2i

(
τ
σ2

)
. Denote

by V (z) the stationary probability distribution density function of the process z(τ). It may be
shown that the density V (z) has the form

V (z) =
C

b(z)
· exp

⎛
⎝ 2

σ2

z∫
0

a(x)

b(x)
dx

⎞
⎠.

A more detailed description of the procedure for constructing the diffusion approximation and
finding the kind of density V (z) can be found in [13, 14].

To construct a diffusion approximation of the probability distribution of the number of requests
on a non-priority orbit, we will use the formula:

P (i) =
V (iσ2)

∞∑
n=0

V (nσ2)
. (32)

Thus, there is no need to determine the value of the constant C.

4. THE DIFFUSION APPROXIMATION ALGORITHM IN MATHCAD SOFTWARE

The obtained theoretical results were realized in MathCAD software package. The numerical
realization algorithm for finding the diffusion approximation of the number of requests on the
non-priority orbit is given below.

Algorithm 1.

(1) set system parameter: λ1, λ2, μ1, μ2, σ1, σ2. Set a sufficiently large number of N ;
(2) by formulas (9) write down the functionsGk(z, x), k = 0, 1, 2 and Rk(x) = Gk(1, x), k = 0, 1, 2;
(3) by formula (21) write down the function a(x) and find the solution κ of the stationary equation

a(x) = 0, using the built-in function of MathCAD software

κ := root(a(x), x, 0, N);
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(4) determine the values R0(κ), R1, R2(κ), which are the stationary probabilities of the server
states;

(5) write a function

G02(z) =

(
μ1 − λ1

μ1 − λ1z

)λ1
σ1 μ1 − λ1

μ1
;

(6) count the derivatives z from the functions Gk(z, x), k = 0, 1, 2 and G02(z, x):

∂G02(z)

∂z
= G02(z)

λ1

σ1

λ1

μ1 − zλ1
;

∂G1(z)

∂z
=

λ1G1(z) + λ1
∂G02(z)

∂z
μ1 − zλ1

,

∂G0(z, x)

∂z
=

−(λ1 + λ2)G0(z, x) + μ1G1(z) + μ2G2(z, x)− xG0(z, x)

σ1z
,

∂G2(z, x)

∂z
=

(λ2 + x)G02(z)− (λ1 + λ2 + μ2 + x)G2(z, x)

σ1z
,

∂2G2(z, x)

∂z2
=

(λ2 + x)G02(z)− (λ1 + λ2 + μ2 + x+ σ1)
∂G2(z, x)

∂z
σ1z

;

(7) write A(z, x) by the formula

A(z, x) =
1

z − 1

(
a(x) + x)G0(z, x) + z(a(x) − λ2)G1(z)

−(λ1z + λ2 − a(x))G2(z, x) − σ1z
∂G2(z, x)

∂z

)
,

B(z, x) by the formula (27), for the h02(z, x) – (25):

h02(z, x) := if

(
z = 1,

1

μ1
A(1, x), h02(z, x)

)
;

(8) determine D(z, x) (24) and h2(1, x) (23);
(9) write the diffusion coefficient b(x) (22);
(10) construct P1(i) (32):

P1(i) =
1

b(σ2i)
exp

⎛
⎝ 2

σ2

σ2i∫
0

a(x)

b(x)
dx

⎞
⎠;

(11) perform normalization and obtain an approximation of the discrete probability distribution
of the number of calls on the non-priority orbit

P (i) := P1(i)

(
N∑
i=0

P1(i)

)−1

.

Example 1. Set the parameters of the system:

λ1 = 0.3, λ2 = 0.9, μ1 = 1, μ2 = 2, σ1 = 1.

We obtain the probability distribution of the server states:

R0 = 0.25, R1 = 0.3, R2 = 0.45.
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Fig. 2. Transfer coefficient and diffusion coefficient plots.

Fig. 3. Diffusion approximation P (i) at σ2 = 1, N = 100.

Figure 2 shows the transfer coefficient a(x) and diffusion coefficient b(x) dependence on the number
of calls in the non-priority orbit. We can conclude that as the number of applications increases,
the spread relative to the average increases. Figures 3–5 show diffusion approximation plots of
probability distribution of the number of calls on the non-priority orbit.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 5 2025



390 NAZAROV, IZMAILOVA

Fig. 4. Diffusion approximation P (i) at σ2 = 0, 1, N = 100.

Fig. 5. Diffusion approximation P (i) at σ2 = 0.01, N = 1000.

Numerical results show the proposed research approach implementing possibility to problems
of this type. Also, we can conclude from the distribution graph that for small values of σ2 the
distribution is close to the Gaussian probability distribution. This conclusion can be confirmed by
referring to [15], where the system M (2)|M (2)|1 is studied by the Gaussian approximation method.
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5. CONCLUSION

In this paper, a queuing system with repeated calls and two incoming flows of calls (priority and
non-priority stream) is investigated.

For the number of priority calls on the orbit, the derivative function is found in the form of a
weighted sum of derivative functions of negative-binomial distributions.

For the number of non-priority requests in an orbit, we obtain a probability distribution, which
we call the diffusion approximation.

The found probability distributions allow us to determine all the necessary probabilistictemporal
characteristics of the system for the received number of calls. The obtained theoretical results can
be used to solve a number of practical problems in which it is necessary to separate requests by
priority: cognitive radio, data transmission, where it is necessary to separate by the volume of
transmitted data packets. The investigation of problems of a more general type (with arbitrary
service time distribution function) is of concern.

REFERENCES

1. Yang, T. and Templeton, J.G.C., A survey on retrial queues, Queueing Syst., 1987, vol. 2, no. 3, pp. 201–
233.

2. Artalejo, J.R., A classified bibliography of research on retrial queues, Progress in 1990–1999, 1999, vol. 7,
no. 2, pp. 187–211.

3. Artalejo, J.R., Accessible bibliography on retrial queues, Math. Comput. Model., 1999, vol. 30, no. 3–4,
pp. 1–6.

4. Artalejo, J.R. and Falin, G.I., Standard and retrial queueing systems: a comparative analysis, Revista
Matematica Complutense, 2002, vol. 15, pp. 101–129.

5. Artalejo, J.R., Accessible bibliography on retrial queues, Math. Comput. Model., 2010, vol. 51, pp. 1071–
1081.

6. Choi, B.D. and Chang, Y., Single server retrial queues with priority calls, Math. Comput. Model., 1999,
vol. 30, pp. 7–32.

7. Yin, M., Yan, M., Guo, Y., and Liu, M., Analysis of a preemptive two-priority queuing system with
impatient customers and heterogeneous servers, Mathematics, 2023, vol. 11, pp. 3878.

8. Razumchik, R., Two-priority queueing system with lcfs service, probabilistic priority and batch arrivals,
AIP Conference Proceedings, 2019, vol. 2116, pp. 090011.

9. Dimitriou, I., A mixed priority retrial queue with negative arrivals, unreliable server and multiple vaca-
tions, Appl. Math. Model., 2013, vol. 37, pp. 1295–1309.

10. Jain, M., Bhagat, A., and Shekhar, C., Double orbit finite retrial queues with priority customers and
service interruptions, Appl. Math. Comput., 2015, vol. 253, pp. 324–344.

11. Atencia, I., Moreno, P., and Bouza, G., An m2/g2/1 retrial queue with priority customers, 2nd optional
service and linear retrial policy, Invest. Oper., 2006, vol. 27, no. 3, pp. 229–248.

12. Nazarov, A., Phung-Duc, T., Paul, S., and Morozova, M., Scaling limits of a tandem queue with two
infinite orbits, Mathematics, 2023, vol. 11, no. 11, pp. 2454.

13. Nazarov, A., Phung-Duc, T., and Izmailova, Ya., Asymptotic-diffusion analysis of multiserver retrial
queueing system with priority customers, Commun. in Comput. and Inform. Sci., 2021, vol. 1391,
pp. 236–250.

14. Nazarov, A., Phung-Duc, T., Paul, S., and Lizyura, O., Diffusion limit for single-server retrial queues
with renewal input and outgoing calls, Mathematics, 2022, vol. 10, no. 6, pp. 948.

15. Nazarov, A. and Izmaylova, Ya., Study of an rq-system m(2)|m(2)|1 with r-persistent preemption of
alternative calls, Siberian Aerospace Journal, 2016, vol. 17, no. 2, pp. 328–334.

This paper was recommended for publication by A.I. Lyakhov, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 5 2025


